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Abstract. On the basis of the pseudopotential plane-wave (PP-PW) method in combination
with the local density functional theory (LDFT), complete stress–strain curves for the uniaxial
loading and uniaxial deformation along the [001] and [111] directions, and the biaxial
proportional extension along [010] and [001] for aluminium are obtained. During the uniaxial
loading, certain general behaviours of the energy versus the stretch and the load versus the stretch
are confirmed; in each case, there exist three special unstressed structures: f.c.c., b.c.c., and f.c.t.
for [001]; f.c.c., s.c., and b.c.c. for [111]. Using stability criteria, we find that all of these states
are unstable, and always occur together with shear instability, except the natural f.c.c. structure.
A Bain transformation from the stable f.c.c. structure to the stable b.c.c. configuration cannot be
obtained by uniaxial compression along any equivalent [001] and [111] direction. The tensile
strengths are similar for the two directions. For the higher energy barrier of the [111] direction,
the compressive strength is greater than that for the [001] direction. With increase in the ratio of
the biaxial proportional extension, the stress and tensile strength increase; however, the critical
strain does not change significantly. Our results add to the existingab initio database for use in
fitting and testing interatomic potentials.

1. Introduction

Investigation of the elastic behaviour of a perfect single crystal under loading is of interest.
It can, for example, be carried out on a system in which substantial, elastic (but not
necessary linear) deformation may occur, in which case substantial deformation may
occur either without significant dislocation movement or before the deformation caused
by dislocation movement becomes dominant. Deformation of whiskers, twinning, and
martensitic transformations are relevant examples. The instability and branching under
loading is related to the ideal strength and transformation. Such information is very useful
in the analysis of the structural response in solids, e.g. polymorphism, amorphization, and
melting to fracture.

Although Born [1] criteria are widely used in the investigation of strength, they are
only valid under zero load. On the basis of a series of comprehensive theoretical and
computational studies, Hill and Milstein [2–7] pointed out the following:

(i) stability is relative and coordinate dependent; and
(ii) different choices of the strain measure lead to different domains of stability.

On the basis of the Morse potential, they investigated the mechanical response of perfect
crystal, including the stress–strain relation, instability, branching, and the strength of f.c.c.
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Cu [8], f.c.c. Ni [10–12], andα-Fe [9], for different loading modes (e.g. uniaxial loading,
uniaxial deformation, and shear loading; here, ‘uniaxial loading’ means that uniaxial stress
is applied to one axis, and the lateral face is relaxed and stress-free (traction-free), while
‘uniaxial deformation’ just means that one axis is dilated or contracted, and the dimensions
of the other two axes are fixed; in uniaxial deformation, all three axes are subjected to
loading). The loading directions which were adopted included [001], [110], and [111].
Possible branching paths were revealed. Using the thermodynamic Gibb function, Wang
et al [13, 14] developed an equivalent-stability analysis method, and investigated the onset
of instability in a homogeneous lattice under critical loading. The onset modes, derived
from the stability criteria, were verified by means of a molecular dynamics simulation.
Zhou and Jóos [15] derived general expressions for the stability criteria by an appropriate
thermodynamic potential.

There has been less investigation based on first principles. Senooet al [16] discussed the
elastic deformation due to [100] loading of Al, using the pseudopotential method. Esposito
et al [17] dealt with the tensile strength of f.c.c. Cu under uniaxial deformation on the basis
of the ab initio potential, augmented-spherical-wave (ASW), and KKR methods. However,
relaxation of the crystal structure was not permitted. Paxtonet al [18] calculated the
theoretical strength of five b.c.c. transition metals, and Ir, Cu, and Al, by considering ideal-
twin stresses using the full-potential linear muffin-tin orbital (FP-LMTO) technique.Šob
et al [19] investigated the theoretical tensile stress in tungsten single crystal under [001]
and [111] loading by the FP-LMTO method. The stability analysis was not explicit in any
of the above cases.

Bain transformation takes a crystal from its stable b.c.c. configuration into a stable f.c.c.
structure, and vice versa, by means of homogeneous axial deformations. Which path requires
the lowest energy and stress barrier between these states was investigated and reviewed by
Milstein et al [20]. The general mechanics and energetics of the Bain transformation were
presented. On the basis of the empirical pseudopotential, Milsteinet al [20] investigated
the Bain transformation of crystalline sodium in detail. This kind of transformation is also
relevant to the investigation of epitaxial thin film [21].

In this paper, we present a direct investigation of the elasticity, the stress–strain relation,
the stability, and the ideal strength of f.c.c. aluminium within density functional theory. The
stability analysis is considered explicitly, on the basis of the theory of Hill, Milstein [2, 3, 7]
and Wanget al [13, 14]. We consider several loading modes: uniaxial deformation and
uniaxial loading along the [001] and [111] directions, and biaxial proportional extension
along [001] and [010]. The deformation is homogeneous, elastic, and permitted to be
appropriately large. The stress–strain relations are calculated, and the ideal strength is
approached via the loss of stability. Branching or structural transformation from a primary
path of deformation takes place with the loss or exchange of stability, which are relevant to
the Bain transformation. In this way, the mechanical responses for different loading modes
and directions are obtained clearly, from first principles.

The paper is organized as follows. The calculation model is presented in section 2. In
this section, we give the formulation of the stress, elastic stiffness coefficients, and stability
criteria, especially for three loading modes. The numerical precision is evaluated at the end
of this section. As a benchmark, equilibrium properties and elastic constants are calculated in
section 3, [001] uniaxial deformation and [001] uniaxial loading are considered in section 4,
and a stability analysis is implemented. In section 5, [111] uniaxial deformation and [111]
uniaxial loading are considered. Results on the biaxial proportional extension are given in
section 6.Ab initio calculations can be used to construct a database for fitting and testing
interatomic potentials [22, 23]; a brief discussion of our results together with the existing
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ab initio database for aluminium is given in section 7. A summary and conclusions are
presented in the last section.

2. Formulation

Consider an initial unstressed and unstrained configuration, denoted asX0. It undergoes
homogeneous deformation under a uniform applied load, and changes fromX0 to X = JX0,
whereJ is the deformation gradient or the Jacobian matrix and the rotation part is subtracted.
The associated Lagrangian strain tensorE is

E = 1

2
(JTJ − I) (1)

and the physical strain is

e = (JTJ)1/2− I. (2)

For the present deformation, the internal energyU is rotationally invariant, and therefore
only a function ofE. The second Piloa–Kirchhoff stress tensorT [24] is defined as

Tij = 1

V0

∂U

∂Eij
. (3)

It relates the Cauchy stress, i.e., the true stressτkl , by the following equation:

Tij = det|J|J−1
ik J

−1
j l τkl (4)

where det|J| is the ratioV/V0. From the Cauchy stress, the applied force can be obtained
by multiplying by the current transverse area.

For the stressed stateX, the elastic constants are determined through the equation

Cijkl(X) = 1

V (X)

(
∂2U

∂E′ij ∂E
′
kl

∣∣∣∣
E′=0

)
(5)

whereE′ is the Lagrangian strain around the stateX. These elastic constants are symmetric
with respect to interchange of indices, and are often expressed in condensed Voigt notation.

To analyse the stability, the elastic stiffness coefficientB [14] is introduced as follows:

Bijkl = Cijkl + 1

2
(δikτjl + δjkτil + δilτjk + δjlτik − 2δklτij ). (6)

From this definition, we can see thatB does not possess(ij)←→ (kl) symmetry generally.
The system may be unstable when

det|B| = 0 (7)

for the first time.
The following loading modes are considered.

(i) Uniaxial deformation:

eij = eδi3δj3 i, j = 1, 2, 3. (8)

In this mode, a strain is specified, and the strain energy is evaluated by subtracting a
reference energy, which is calculated using the theoretical lattice constant, on the basis of
a total-energy calculation. The corresponding stretches of the three axes areλ1 = λ2 = 1,
λ3 < 1 for compression, andλ3 > 1 for tension.

(ii) Uniaxial loading:

τij = σδi3δj3 i, j = 1, 2, 3. (9)
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For a given longitudinal strain, let the transverse lattice contract or dilate to make the total
energy arriving a minimum, which corresponds to zero stress (traction) on the lateral faces.
Due to the crystal symmetry, the transverse contraction or dilation is the same in the two
transverse directions. With the longitudinal strain and the corresponding transverse strain,
the strain energy of the uniaxial loading is calculated. The corresponding stretches of the
three axes are: for compression,λ1 = λ2 > 1, andλ3 < 1; for tension,λ1 = λ2 < 1, and
λ3 > 1.

(iii) Biaxial proportional extension:

e22 = αe33 6= 0

eij = 0 otherwise.
(10)

The ab initio pseudopotential plane-wave method is implemented. On the basis of
the mechanism of Hamman [28] and Troullier and Martins [29], soft first-principles
pseudopotentials are generated using the package DgncppB [25, 26]. The package Fhi96md
[27], which employs a first-principles pseudopotential and a plane-wave basis set, is
used to perform the DFT total-energy calculation. In our calculations, the local density
approximation (LDA) with the exchange and correlation energy functional developed by
Perdew and Zunger [30] is adopted.

Two supercells are designed in our calculations: one is a four-atom supercell, for use
in considering the equilibrium properties and elastic constants, uniaxial deformation and
loading along [001], and biaxial deformation along [010] and [001]; the other one is a
three-atom supercell for use in considering uniaxial deformation and loading along [111].
Due to the calculation of the stress and elastic constants, the precision must be evaluated
carefully. Ecut = 12 Ryd is sufficient in our pseudopotential plane-wave calculations. Due
to the discontinuous nature of the occupation number of metal electrons, a large number
of k-space samples must be used to reach sufficient precision. A smear parameter1 is
introduced to decrease the number ofk-points. Our calculation shows that1 = 0.058 Ryd
already gives a satisfactory result. The correspondingk-meshes are 8× 8 × 8 for the
four-atom supercell, and 10× 10× 6 for the three-atom supercell.

Table 1. Elastic moduli of Al for the equilibrium state. The length unit is theÅ, andT = 300 K,
with the experimental lattice constant.C11+ C12, C11− C12, andC44 are the elastic constants
of single crystal; the other moduli are those for isotropic materials.

a0 C11+ C12 C11− C12 C44 B G E ν A

Experiment 4.05 168 46 28 76.0 26.0 70.0 0.35 1.22
(T = 300 K) [32]
Present work 3.97 183 61.4 37.4
(T = 0 K)
Mehl et al 3.99 184 58.0 33.0
(T = 0 K) [34]
Sun and Kaxiras 3.95 58.8 45.5
(T = 0 K) [33]
Present work 4.05 164 44.8 28.1 74.7 25.6 69.0 0.347 1.25
(T = 300 K)
Mehl et al 4.05 150 50 31 67.0 28.0 75.0 0.31 1.24
(T = 300 K) [34]
Sun and Kaxiras 4.05 45 29.7
(T = 300 K) [33]
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3. Equilibrium properties and elastic constants

As a test, we have calculated the equilibrium lattice constant and elastic constants of bulk
Al. Face-centred cubic Al has three independent elastic constants, i.e.C11, C12, C44. The
equilibrium lattice constanta0 and the bulk modulusB0 are obtained by fitting the energy–
volume curve to the Murnaghan equation of state [31]. The relation between the bulk
modulusB0 and the elastic constant isB0 = (C11+ 2C12)/3. From the uniaxial deform-
ation along the [001] direction and the trigonal strain along the [111] direction,C11 andC44

are obtained. The results are given in table 1.
The theoretical lattice constant,a0 = 3.97 Å, is 2% smaller than the experimental

value, a0 = 4.05 Å, and the corresponding elastic constants are 10% larger than the
experimental values [32] measured at room temperature. This difference is typical of
DFT-LDA calculations, and can be seen clearly from other first-principles results. Sun
and Kaxiras [33] pointed out that the elastic constants are sensitive to the lattice constant
of the crystal, and calculated the corresponding data using the lattice constants at room
temperature. On the basis of the linear augmented-plane-wave (LAPW) method, Mehl
et al [34] made similar calculations, and gave the bulk modulus, Young’s modulus, shear
modulus, average Poisson ratio, and anisotropy of isotropic materials with an orientation
average. We also calculated the elastic moduli using the experimental lattice constants, and
we present the results in table 1. All of the theoretical calculations are in good agreement
with experimental data, and better results are given by our calculation. However, it is worth
noting that we performed our calculations of the strength and stability using the theoretical
lattice constant. Any externally imposed strain and stress should be excluded to get accurate
results.

Figure 1. Two fundamental cells of the face-centred tetragonal lattice and body-centred
tetragonal lattice within the same lattice.

4. [001] uniaxial loading and [001] uniaxial deformation

A four-atom face-centred tetragonal supercell was designed for investigating [001] uniaxial
loading and [001] uniaxial deformation. [100], [010], and [001] were selected as theX-,
Y -, andZ-axes. In the initial equilibrium state, the f.c.t. structure is f.c.c. With the same
f.c.t. cell, the b.c.t. cell can be obtained by a rotationπ/4 along [001]. This relation can be
found from figure 1. We start from the unstressed f.c.c. state whereλ1 = λ2 = λ3 = 1, and
let theZ-axis be compressed: on the prescribed path, the lattice must pass through the state



9894 Weixue Li and Tzuchiang Wang

λ3 = λ1/
√

2= λ2/
√

2 where the b.c.t. structure becomes a b.c.c. one. The cubic symmetry
at this point implies that the loads are hydrostatic. For [001] uniaxial loading, since the
transverse loads are always zero, the axial load in this state should be zero. Since the load
must be tensile asλ3 → ∞ and compressive asλ3 → 0, the existence of two unstressed
states on the primary path of [001] loading implies a third zero point in general. Obviously,
the third one does not have any symmetry higher than tetragonal. The state located at the
central unstressed point is always unstable for its local energy maximum. For a detailed
analysis and proof of the general forms of the energy versus stretch and stress versus stretch

Figure 2. The calculated strain energy (a), and force and stress (b) during [001] deformation
and [001] loading for the theoretical lattice constant.
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relationships, the reader is referred to the original paper by Milstein [35, 36].
For tetragonal symmetry of the crystal under uniaxial loading and uniaxial deformation

along the [001] direction, the number of independent elastic constants is reduced to six:
C33, C12, C13 = C23, C11 = C22, C44 = C55, andC66; all of the otherCij are equal to zero.
Since we are more interested in uniaxial loading, we analyse its stability. Using equations
(6), (7), and (9), we write the instability criteria for [001] uniaxial loading as follows:

(C33+ σ)(C11+ C12)− 2C13(C13− σ) 6 0 (11)

C11− C12 6 0 (12)

C44+ 1

2
σ 6 0 (13)

C66 6 0. (14)

The first expression involves the vanishing of the bulk modulus, and is referred to as the
spinodal instability criteria. The second instability involves symmetry breaking (bifurcation)
with volume conservation; it may be identified as tetragonal shear breaking, and is referred
to as the Born instability. In this case, the crystal can branch away from the tetragonal path
to a face-centred orthorhombic path under uniaxial dead loading; that is, the branching is
δλ1 = −δλ2 6= 0 with δλ3 = 0 andδτ11 = δτ22 = δτ33 = 0. The conditionC66 = 0, when
theCij are reckoned relative to the f.c.t. crystal axes, is equivalent toC11− C12 = 0 when
theCij are computed relative to the axes of the b.c.t. cell. So, for the state whereC66 = 0
(referred to the f.c.t. axes), the tetragonal crystal branches to a body-centred orthorhombic
path under uniaxial loading.C44+ 1

2σ = 0 gives another shear instability.
Energy versus strain and stress, and force versus strain curves are given in figure 2

(unless otherwise stated, the strain, force, and stress given in the figures are the physical
strain, applied force, and Cauchy stress). There exists only one energy minimum under
uniaxial deformation. Any departure from the minimum for this loading mode leads
to a rapid increase of the strain energy. Due to the triaxial stresses for the uniaxial
deformation, its strain energy is always greater than the uniaxial loading. This is the
same with Milstein’s conclusion: the uniaxial loading represents the lowest-energy path
between any two Bain paths. However, additional local maximum and local minimum
states are found under uniaxial compression. The longitudinal and transverse strain at the
local maximum aree33 = −0.20 ande11 = 0.1313 respectively; the ratio of the stretching,
(1 − 0.2)/(1 + 0.1313) = 0.7071, is approximately equal to 1/

√
2. The corresponding

structure is b.c.c. with the lattice constant 3.176Å, as expected. The remaining local
minimum state is a f.c.t. structure withe33 = −0.305. From figure 2(b), we see that all
three extremes are stress-free. Because the b.c.c. structure is located at a local maximum,
it is unstable.

The elastic constants and corresponding stability range under [001] uniaxial loading are
shown in figure 3.C66 is always negative over the range [−0.40,−0.128], which includes
the unstressed f.c.t. state. This means that, although the stress-free f.c.t. structure is at the
local minimum of the uniaxial loading, it is still unstable against shear loading. Based on the
explanation ofC66, we see that this f.c.t. state can transform to a body-centred orthorhombic
state under uniaxial compression. The range of the spinodal instability under compression
is [−0.263,−0.119]. The b.c.c. state lies at a double instability.

From figure 2(b), the compressive strength of the [001] uniaxial loading is−5.62 GPa
with e33 = −0.1. During tension, the stress approaches its maximum of 12.54 GPa with
e33 = 0.36. However,C11 − C12 andC44 + 1

2σ have already become negative whene33

exceeded 0.272, and the corresponding stress is 12.1 GPa. This gives the lower limit of
the tensile strength. Two possible branchings are triggered at this critical strain. With
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Figure 3. The calculated elastic constants (a) and stability (b) under [001] loading for the
theoretical lattice constant.

C11− C12 = 0, the tetragonal lattice will transform via a face-centred orthorhombic path
and finally become a stable b.c.c. state [37]. WithC44 + 1

2σ = 0, the orthorhombic
symmetry will be lost. However, which branching takes place depends on the higher-
order elastic modulus. By means of pseudopotential methods based on a proposed model
potential, Senooet al [16] obtained a compressive strength of approximately−5.0 GPa,
with a strain of−0.11, and the unstressed b.c.c. structure occurred at a strain of−0.2.
These results are very similar to ours. However, the tensile strength which they obtained,
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17.4 GPa with a strain of 0.42, is greater than ours. TheC11 − C12 = 0 branching was
assumed to take place at a strain of 0.15 in their work. Paxtonet al [18] calculated the
ideal-twin stress of Al on the basis of the FP-LMTO method. The corresponding value,
0.14 1

3(C11−C12+C44) = 4.61 GPa (here theCij are the elastic constants of the theoretical
lattice), is approximately one third of our tensile strength.

Figure 4. The calculated transverse strain for [001] loading and [111] loading with the theoretical
lattice constant.

Unlike the findings for Ni [10–12], Cu [8], andα-Fe [9] obtained by Milsteinet al, the
uniaxial stress and force for Al are always lower than for uniaxial deformation before they
approach the maximum. The transverse strain versus longitudinal strain is given in figure 4,
and the corresponding Poisson ratio is positive along the whole path of uniaxial loading.

5. [111] uniaxial loading and [111] uniaxial deformation

For the case of [111] uniaxial loading and [111] uniaxial deformation, the supercell is
designed as follows: the planar vectors are identical to primitive f.c.c. lattice vectors, for
instance along [110] and [101] directions; the third lattice vector is in the [111] direction;
and here we select three layers. In each layer, there is only one atom.

The path of deformation considered is axisymmetric, and all directions transverse to
[111] are equally stretched or fixed. The axisymmetric path of deformation under [111]
loading and [111] deformation consequently passes through three cubic configurations:
f.c.c., s.c., and b.c.c. with increase of the compression. To illustrate this, a single quantity,r,
the ratio of the longitudinal to the transverse stretch under loading, is defined. Three smallest
tetrahedra are cut separately from f.c.c., s.c., and b.c.c. structures, as shown in figure 5. The
bottom plane ABC is just the{111} plane, and the direction of OD is [111]. The ratios
of the heights and edge lengths of the bottom plane are

√
6/3,
√

6/6,
√

6/12, i.e. 1, 0.5,
0.25. These ratios are just values ofr, which we defined above. Whenr decreases from 1
to 0.25 during compression, the cubic f.c.c., s.c., and b.c.c. structures appear sequentially.
The details can be found from figure 5. During [111] uniaxial loading, the transverse load
is always zero, and cubic symmetry requires the three cubic configurations to be stress-free.
However, during [111] uniaxial deformation, there is always a transverse load, and cubic
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Figure 5. The three smallest tetrahedra cut separately from f.c.c., s.c., and b.c.c. structures.
The length unit of each tetrahedron is the lattice constant of the corresponding original lattice.
The bottom plane is just the{111} plane, and the triangle ABC is an equilateral triangle; the
direction of OD is [111]. The ratio of OD to CB is the ratio of the longitudinal stretch to the
transverse stretch.

symmetry of b.c.c. and s.c. indicates hydrostatic compression. For the transverse contraction
under [111] loading, the s.c. and b.c.c. states will occur earlier than the [111] deformation.

The calculated results are given in figure 6. Just like in the [001] case, there exists
only one minimum under uniaxial deformation, and the strain energy is always higher
than the uniaxial loading. Under uniaxial loading, another local maximum and local
minimum are obtained; the form of the energy versus stretch relation is just same as for
[001] loading. From figure 4, we gete33 = −0.333 at the local maximum point with
e11 = −0.334; the correspondingr, 0.5, is simply that for the unstressed s.c. configuration.
This state is unstable for the local energy maximum. At the local minimum,e33 = −0.59
and e11 = 0.64; the correspondingr, 0.25, is that for unstressed b.c.c. structure. From
a simple geometric calculation, we obtain the lattice constants of stress-free s.c. and
b.c.c. structures: 2.648̊A and 3.253Å respectively. The corresponding elastic constants
are: (s.c.)C11 + C12 = −10.1 GPa,C11 − C12 = −24.9 GPa, andC44 = 4.4 GPa;
(b.c.c.) C11 + C12 = 65.19 GPa,C11 − C12 = −48.92 GPa, andC44 = 26.7 GPa.
From these values, we see that both s.c. and b.c.c. structures are unstable—even the b.c.c.
structure located at the local minimum of the uniaxial loading. A shear instability always
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Figure 6. The calculated strain energy (a), and force and stress (b) for [111] deformation and
[111] loading with the theoretical lattice constant.

accompanies the unstressed s.c. and b.c.c. states. On the basis of the present and previous
discussions, we conclude that for f.c.c. Al, a stable b.c.c. structure cannot be obtained by
uniaxial compression along any equivalent [001] and [111] directions. The possible Bain
transformation from stable f.c.c. to stable b.c.c. structure is branching caused by uniaxial
tension.

Because of the lower symmetry under [111] loading and the numerical nature of the
first-principles calculations, the analysis of the stability for this loading mode is difficult,
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Table 2. The strength of Al calculated for different loading modes; here, TS means tensile
strength, and CS means compressive strength.

Uniaxial deformation Uniaxial loading
(GPa) ε33ε11 = ε22 (GPa) ε33ε11 = ε22

[001] TS 12.65 0.30, 0.0 12.1 0.272,−0.0386

[001] CS −5.62 −0.1, 0.049

[111] TS 11.52 0.265, 0.0 11.05 0.295,−0.0453

[111] CS −15.89 −0.177, 0.110

Shear strength [18] 4.61

and is hence omitted except for several special cases, i.e. the initial f.c.c., and unstressed
s.c. and b.c.c. states. From figure 6(b), we can see that the stress and force for the uniaxial
loading are always smaller than the uniaxial deformation. The maximum of the tensile
stress is 11.05 GPa ate33 = 0.295, and the maximum magnitude of the compressive stress
is 15.89 GPa ate33 = −0.177. The tensile strength and critical strain are similar to those for
[001] tension; however, the compressive strength and critical strain are significantly greater
than those for the [001] uniaxial compression. (The details are given in table 2.) This
can be attributed to the symmetry of the materials. Under uniaxial compression, the stable
f.c.c. crystal in the [001] case approaches other extreme structures more quickly than in the
[111] case. This point is obvious from the following comparison. Under [001] loading, the
stress-free b.c.c. and f.c.t. structures are approached ate33 = −0.2 ande33 = −0.305, where
the f.c.t. structure represents the local minimum and the initial f.c.c. structure represents the
overall minimum. The energy barrier obtained from these minima is as follows:

1Ef.c.c.→f.c.t. = 0.1047 eV/atom 1Ef.c.t.→f.c.c. = 0.0319 eV/atom.

For the [111] loading, the strains of the unstressed s.c. and b.c.c. configurations are−0.333
and−0.59, where the b.c.c. structure represents the local minimum. The corresponding
energy barrier is as follows:

1Ef.c.c.→b.c.c. = 0.3766 eV/atom 1Eb.c.c.→f.c.c. = 0.2766 eV/atom.

A higher energy barrier and critical strain to transitions are needed for [111] compression.

6. Biaxial proportional extension

Biaxial proportional extension is considered here. In the present paper, we deal with
extension along the [010] and [001] directions; volume relaxations are not considered.
The strain ratios between [010] and [001] are 0.25, 0.5, 0.75, and 1. The results are given
in figure 7. With increase of the ratio, the energy, stress, and maximum stress increase. This
is because more energy is needed with a higher transverse strain for the same longitudinal
strain. However, the critical strains are similar for different proportional loading modes.

7. The ab initio database for aluminium

Using total-energy calculations from first principles, Robertsonet al [22] and Payneet al
[23] constructed anab initio database for aluminium, which includes 171 structures with
coordination number ranging from 0 to 12 and nearest-neighbour distance ranging from
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Figure 7. The calculated strain energy (a) and stress (b) during biaxial proportional extension,
with the difference ratios along the [010] and [001] directions, for the theoretical lattice constant.

2.0 Å to 5.7 Å, for fitting and testing interatomic potentials. The energies (per atom) of all
of the structures are listed with the corresponding nearest-neighbour distances. The 18 basic
structures were calculated self-consistently, and the remaining 153 structures, obtained using
non-self-consistent calculations, were generated from the hydrostatic pressure. However,
the force, range of stability, and branching points, which are important for determining the
topologies of the energy surfaces, were not given in [22] and [23].

In our investigations, all of the total-energy calculations are self-consistent; the basic
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structures are four-atom and three-atom f.c.c. supercells; three loading modes (i.e. uniaxial
deformation, uniaxial loading, and biaxial proportional extension) and two loading directions
(i.e. [001] and [111]) are considered. The uniaxial loading path connects structures with
different coordination numbers; for example, for the [111] case, from right to left,

12 (f.c.c.)→ 6 (s.c.) → 8 (b.c.c.)

and for the [001] case,

12 (f.c.c.)→ 8 (b.c.c.).

The complete energy and force–stress curves are plotted. In particular, the ranges of stability
and branching points for [001] uniaxial loading are presented. The stabilities of three
extreme points of [111] uniaxial loading are also given. This information is essential to the
determination of the functional form of the interatomic potential.

8. Summary and conclusions

On the basis of DFT total-energy calculations and stability theory given by Hill and Milstein
[2, 3, 7] and Wanget al [13, 14], we have given a detailed investigation of the mechanical
response of f.c.c. aluminium for different loading modes and loading directions. We reached
the following conclusions.

(1) In view of the requirements of crystal symmetry, the general forms of the energy
versus stretch, and stress versus stretch relations for uniaxial loading of cubic crystal can be
described as follows: one local minimum, one local maximum, and one overall minimum
for the energy versus stretch curve, which are related to three unstressed states. The state
in the middle is always unstable because of its positioning at an energy maximum.

However, when we consider a more complicated crystal, for example one with diamond
structure, or alloys [38, 39], the conclusions above should be treated with caution. In such
cases, the symmetry is determined by both the structural parameters and the atomic ordering,
and some symmetry-dictated extrema may be lost.

(2) The complete stress–strain curves for uniaxial deformation and uniaxial loading
along the [001] and [111] directions, and for biaxial proportional extension are obtained.
The magnitudes of the stress and force for the uniaxial deformation are always greater
than those for the uniaxial loading in the [001] and [111] directions over the range of
stability. The stability range for [001] uniaxial loading is given explicitly. The tensile and
compressive strengths along the [001] and [111] directions are presented.

(3) Along the path of [001] uniaxial loading, the local minimum, local maximum, and
overall minimum correspond to unstressed f.c.t, b.c.c., and f.c.c. structures; under [111]
uniaxial loading, they relate to stress-free b.c.c., s.c. and f.c.c. states, respectively. The
intermediate states in both cases are unstable as they lie at local maxima. Although the
f.c.t. state for [001] uniaxial loading and b.c.c. state for uniaxial [111] loading lie at local
minima, they are still unstable against the shear instability. It is worth noting that the
b.c.c. configurations for [001] and [111] loading are different configurations. Their lattice
constants are 3.176̊A and 3.253Å, and the former is located at a local maximum while the
latter is located at a local minimum.

A stable b.c.c. state of Al metal cannot be obtained by uniaxial compression along any
equivalent [001] and [111] direction. The possible Bain transformation is branching from
the prescribed path of uniaxial tension along equivalent [001] or [110] directions.
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(4) The tensile strength is similar along the [001] and [111] directions. For the higher
energy barrier for [111] uniaxial compression, the compressive strength is greater than in
the [001] case.

(5) The present results add to the existingab initio database.
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